Lamplighter Graphs Do Not Admit Harmonic Functions of Finite Energy
نویسندگان
چکیده
We prove that a lamplighter graph of a locally finite graph over a finite graph does not admit a non-constant harmonic function of finite Dirichlet energy.
منابع مشابه
Positive Harmonic Functions for Semi-isotropic Random Walks on Trees, Lamplighter Groups, and Dl-graphs
We determine all positive harmonic functions for a large class of “semiisotropic” random walks on the lamplighter group, i.e., the wreath product Zq ≀Z, where q ≥ 2. This is possible via the geometric realization of a Cayley graph of that group as the Diestel-Leader graph DL(q, q). More generally, DL(q, r) (q, r ≥ 2) is the horocyclic product of two homogeneous trees with respective degrees q+1...
متن کاملHarmonic analysis of finite lamplighter random walks
Recently, several papers have been devoted to the analysis of lamplighter random walks, in particular when the underlying graph is the infinite path Z. In the present paper, we develop a spectral analysis for lamplighter random walks on finite graphs. In the general case, we use the C2-symmetry to reduce the spectral computations to a series of eigenvalue problems on the underlying graph. In th...
متن کاملLamplighters, Diestel-Leader Graphs, Random Walks, and Harmonic Functions
The lamplighter group over Z is the wreath product Zq ≀ Z. With respect to a natural generating set, its Cayley graph is the Diestel-Leader graph DL(q, q). We study harmonic functions for the “simple” Laplacian on this graph, and more generally, for a class of random walks on DL(q, r), where q, r ≥ 2. The DL-graphs are horocyclic products of two trees, and we give a full description of all posi...
متن کاملGreen kernel estimates and the full Martin boundary for random walks on lamplighter groups and Diestel–Leader graphs
We determine the precise asymptotic behaviour (in space) of the Green kernel of simple random walk with drift on the Diestel–Leader graph DL(q, r), where q, r 2. The latter is the horocyclic product of two homogeneous trees with respective degrees q + 1 and r + 1. When q = r , it is the Cayley graph of the wreath product (lamplighter group) Zq Z with respect to a natural set of generators. We d...
متن کاملSolution of Harmonic Problems with Weak Singularities Using Equilibrated Basis Functions in Finite Element Method
In this paper, Equilibrated Singular Basis Functions (EqSBFs) are implemented in the framework of the Finite Element Method (FEM), which can approximately satisfy the harmonic PDE in homogeneous and heterogeneous media. EqSBFs are able to automatically reproduce the terms consistent with the singularity order in the vicinity of the singular point. The newly made bases are used as the compliment...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009